|
@@ -0,0 +1,177 @@
|
|
|
+import torch
|
|
|
+import torch.nn as nn
|
|
|
+import torch.nn.functional as F
|
|
|
+
|
|
|
+class Transformer(nn.Module):
|
|
|
+ def __init__(self):
|
|
|
+ super(Transformer, self).__init__()
|
|
|
+ #
|
|
|
+ self.refpad01_1 = nn.ReflectionPad2d(3)
|
|
|
+ self.conv01_1 = nn.Conv2d(3, 64, 7)
|
|
|
+ self.in01_1 = InstanceNormalization(64)
|
|
|
+ # relu
|
|
|
+ self.conv02_1 = nn.Conv2d(64, 128, 3, 2, 1)
|
|
|
+ self.conv02_2 = nn.Conv2d(128, 128, 3, 1, 1)
|
|
|
+ self.in02_1 = InstanceNormalization(128)
|
|
|
+ # relu
|
|
|
+ self.conv03_1 = nn.Conv2d(128, 256, 3, 2, 1)
|
|
|
+ self.conv03_2 = nn.Conv2d(256, 256, 3, 1, 1)
|
|
|
+ self.in03_1 = InstanceNormalization(256)
|
|
|
+ # relu
|
|
|
+
|
|
|
+ ## res block 1
|
|
|
+ self.refpad04_1 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv04_1 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in04_1 = InstanceNormalization(256)
|
|
|
+ # relu
|
|
|
+ self.refpad04_2 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv04_2 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in04_2 = InstanceNormalization(256)
|
|
|
+ # + input
|
|
|
+
|
|
|
+ ## res block 2
|
|
|
+ self.refpad05_1 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv05_1 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in05_1 = InstanceNormalization(256)
|
|
|
+ # relu
|
|
|
+ self.refpad05_2 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv05_2 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in05_2 = InstanceNormalization(256)
|
|
|
+ # + input
|
|
|
+
|
|
|
+ ## res block 3
|
|
|
+ self.refpad06_1 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv06_1 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in06_1 = InstanceNormalization(256)
|
|
|
+ # relu
|
|
|
+ self.refpad06_2 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv06_2 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in06_2 = InstanceNormalization(256)
|
|
|
+ # + input
|
|
|
+
|
|
|
+ ## res block 4
|
|
|
+ self.refpad07_1 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv07_1 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in07_1 = InstanceNormalization(256)
|
|
|
+ # relu
|
|
|
+ self.refpad07_2 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv07_2 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in07_2 = InstanceNormalization(256)
|
|
|
+ # + input
|
|
|
+
|
|
|
+ ## res block 5
|
|
|
+ self.refpad08_1 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv08_1 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in08_1 = InstanceNormalization(256)
|
|
|
+ # relu
|
|
|
+ self.refpad08_2 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv08_2 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in08_2 = InstanceNormalization(256)
|
|
|
+ # + input
|
|
|
+
|
|
|
+ ## res block 6
|
|
|
+ self.refpad09_1 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv09_1 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in09_1 = InstanceNormalization(256)
|
|
|
+ # relu
|
|
|
+ self.refpad09_2 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv09_2 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in09_2 = InstanceNormalization(256)
|
|
|
+ # + input
|
|
|
+
|
|
|
+ ## res block 7
|
|
|
+ self.refpad10_1 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv10_1 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in10_1 = InstanceNormalization(256)
|
|
|
+ # relu
|
|
|
+ self.refpad10_2 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv10_2 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in10_2 = InstanceNormalization(256)
|
|
|
+ # + input
|
|
|
+
|
|
|
+ ## res block 8
|
|
|
+ self.refpad11_1 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv11_1 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in11_1 = InstanceNormalization(256)
|
|
|
+ # relu
|
|
|
+ self.refpad11_2 = nn.ReflectionPad2d(1)
|
|
|
+ self.conv11_2 = nn.Conv2d(256, 256, 3)
|
|
|
+ self.in11_2 = InstanceNormalization(256)
|
|
|
+ # + input
|
|
|
+
|
|
|
+ ##------------------------------------##
|
|
|
+ self.deconv01_1 = nn.ConvTranspose2d(256, 128, 3, 2, 1, 1)
|
|
|
+ self.deconv01_2 = nn.Conv2d(128, 128, 3, 1, 1)
|
|
|
+ self.in12_1 = InstanceNormalization(128)
|
|
|
+ # relu
|
|
|
+ self.deconv02_1 = nn.ConvTranspose2d(128, 64, 3, 2, 1, 1)
|
|
|
+ self.deconv02_2 = nn.Conv2d(64, 64, 3, 1, 1)
|
|
|
+ self.in13_1 = InstanceNormalization(64)
|
|
|
+ # relu
|
|
|
+ self.refpad12_1 = nn.ReflectionPad2d(3)
|
|
|
+ self.deconv03_1 = nn.Conv2d(64, 3, 7)
|
|
|
+ # tanh
|
|
|
+
|
|
|
+ def forward(self, x):
|
|
|
+ y = F.relu(self.in01_1(self.conv01_1(self.refpad01_1(x))))
|
|
|
+ y = F.relu(self.in02_1(self.conv02_2(self.conv02_1(y))))
|
|
|
+ t04 = F.relu(self.in03_1(self.conv03_2(self.conv03_1(y))))
|
|
|
+
|
|
|
+ ##
|
|
|
+ y = F.relu(self.in04_1(self.conv04_1(self.refpad04_1(t04))))
|
|
|
+ t05 = self.in04_2(self.conv04_2(self.refpad04_2(y))) + t04
|
|
|
+
|
|
|
+ y = F.relu(self.in05_1(self.conv05_1(self.refpad05_1(t05))))
|
|
|
+ t06 = self.in05_2(self.conv05_2(self.refpad05_2(y))) + t05
|
|
|
+
|
|
|
+ y = F.relu(self.in06_1(self.conv06_1(self.refpad06_1(t06))))
|
|
|
+ t07 = self.in06_2(self.conv06_2(self.refpad06_2(y))) + t06
|
|
|
+
|
|
|
+ y = F.relu(self.in07_1(self.conv07_1(self.refpad07_1(t07))))
|
|
|
+ t08 = self.in07_2(self.conv07_2(self.refpad07_2(y))) + t07
|
|
|
+
|
|
|
+ y = F.relu(self.in08_1(self.conv08_1(self.refpad08_1(t08))))
|
|
|
+ t09 = self.in08_2(self.conv08_2(self.refpad08_2(y))) + t08
|
|
|
+
|
|
|
+ y = F.relu(self.in09_1(self.conv09_1(self.refpad09_1(t09))))
|
|
|
+ t10 = self.in09_2(self.conv09_2(self.refpad09_2(y))) + t09
|
|
|
+
|
|
|
+ y = F.relu(self.in10_1(self.conv10_1(self.refpad10_1(t10))))
|
|
|
+ t11 = self.in10_2(self.conv10_2(self.refpad10_2(y))) + t10
|
|
|
+
|
|
|
+ y = F.relu(self.in11_1(self.conv11_1(self.refpad11_1(t11))))
|
|
|
+ y = self.in11_2(self.conv11_2(self.refpad11_2(y))) + t11
|
|
|
+ ##
|
|
|
+
|
|
|
+ y = F.relu(self.in12_1(self.deconv01_2(self.deconv01_1(y))))
|
|
|
+ y = F.relu(self.in13_1(self.deconv02_2(self.deconv02_1(y))))
|
|
|
+ y = F.tanh(self.deconv03_1(self.refpad12_1(y)))
|
|
|
+
|
|
|
+ return y
|
|
|
+
|
|
|
+
|
|
|
+class InstanceNormalization(nn.Module):
|
|
|
+ def __init__(self, dim, eps=1e-9):
|
|
|
+ super(InstanceNormalization, self).__init__()
|
|
|
+ self.scale = nn.Parameter(torch.FloatTensor(dim))
|
|
|
+ self.shift = nn.Parameter(torch.FloatTensor(dim))
|
|
|
+ self.eps = eps
|
|
|
+ self._reset_parameters()
|
|
|
+
|
|
|
+ def _reset_parameters(self):
|
|
|
+ self.scale.data.uniform_()
|
|
|
+ self.shift.data.zero_()
|
|
|
+
|
|
|
+ def __call__(self, x):
|
|
|
+ n = x.size(2) * x.size(3)
|
|
|
+ t = x.view(x.size(0), x.size(1), n)
|
|
|
+ mean = torch.mean(t, 2).unsqueeze(2).unsqueeze(3).expand_as(x)
|
|
|
+ # Calculate the biased var. torch.var returns unbiased var
|
|
|
+ var = torch.var(t, 2).unsqueeze(2).unsqueeze(3).expand_as(x) * ((n - 1) / float(n))
|
|
|
+ scale_broadcast = self.scale.unsqueeze(1).unsqueeze(1).unsqueeze(0)
|
|
|
+ scale_broadcast = scale_broadcast.expand_as(x)
|
|
|
+ shift_broadcast = self.shift.unsqueeze(1).unsqueeze(1).unsqueeze(0)
|
|
|
+ shift_broadcast = shift_broadcast.expand_as(x)
|
|
|
+ out = (x - mean) / torch.sqrt(var + self.eps)
|
|
|
+ out = out * scale_broadcast + shift_broadcast
|
|
|
+ return out
|