|
@@ -14,7 +14,7 @@ feature_columns = [
|
|
|
|
|
|
# === 1. 读取CSV并预处理 ===
|
|
|
try:
|
|
|
- df = pd.read_csv(csv_path, parse_dates=["t_formula", "t_real"], encoding='gbk')
|
|
|
+ df = pd.read_csv(csv_path, parse_dates=["t_formula", "t_real"], encoding='utf-8')
|
|
|
print(f"✅ 成功读取CSV文件,共{len(df)}条数据")
|
|
|
except Exception as e:
|
|
|
print(f"❌ 读取CSV失败: {e}")
|
|
@@ -68,7 +68,7 @@ df.loc[new_sample.index, "predicted_t_real_hours"] = predicted_time
|
|
|
|
|
|
# === 4. 保存带预测值的CSV ===
|
|
|
try:
|
|
|
- df.to_csv(csv_path, encoding='gbk', index=False)
|
|
|
+ df.to_csv(csv_path, encoding='utf-8', index=False)
|
|
|
print(f"✅ 最新数据预测完成,已更新到 {csv_path}")
|
|
|
except Exception as e:
|
|
|
print(f"❌ 保存CSV失败: {e}")
|