python算法

Yijun Li 5eb8612a98 Update README.md 7 年 前
network 45a2472acc init 7 年 前
pretrained_model 45a2472acc init 7 年 前
src 45a2472acc init 7 年 前
test_img 45a2472acc init 7 年 前
test_output 45a2472acc init 7 年 前
.gitignore 45a2472acc init 7 年 前
README.md 5eb8612a98 Update README.md 7 年 前
test.lua 45a2472acc init 7 年 前
test.py 45a2472acc init 7 年 前

README.md

CartoonGAN-Test-Pytorch-Torch

Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors, I made these simple scripts for a quick test.

Getting started

  • Linux
  • NVIDIA GPU
  • Pytorch
  • Torch

    git clone https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch
    cd CartoonGAN-Test-Pytorch-Torch
    

Pytorch

The original pretrained models are Torch nngraph models, which cannot be loaded in Pytorch through load_lua. So I manully copy the weights (bias) layer by layer and convert them to .pth models.

  • Download the converted models:

    sh pretrained_model/download_pth.sh
    
  • For testing:

    python test.py --input_dir YourImgDir --style Hosoda --gpu 0
    

Torch

Working with the original models in Torch is also fine. I just convert the weights (bias) in their models from CudaTensor to FloatTensor so that cudnn is not required for loading models.

  • Download the converted models:

    sh pretrained_model/download_t7.sh
    
  • For testing:

    th test.lua -input_dir YourImgDir -style Hosoda -gpu 0
    

Examples (Left: input, Right: output)

Note

  • The training code should be similar to the popular GAN-based image-translation frameworks and thus is not included here.

  • With a single GPU (~12GB memory), the largest image size for testing is ~500 now.

Acknowledgement