|
|
hai 6 meses | |
|---|---|---|
| network | %!s(int64=7) %!d(string=hai) anos | |
| pretrained_model | %!s(int64=7) %!d(string=hai) anos | |
| src | %!s(int64=7) %!d(string=hai) anos | |
| test_img | %!s(int64=7) %!d(string=hai) anos | |
| test_output | %!s(int64=7) %!d(string=hai) anos | |
| .gitignore | %!s(int64=7) %!d(string=hai) anos | |
| LICENSE | %!s(int64=5) %!d(string=hai) anos | |
| README.md | %!s(int64=7) %!d(string=hai) anos | |
| python算法时长计算研究生版.py | hai 7 meses | |
| test.lua | %!s(int64=7) %!d(string=hai) anos | |
| test.py | %!s(int64=7) %!d(string=hai) anos | |
| train_corrector.py | hai 6 meses | |
| 参考.py | hai 6 meses | |
| 模型调用.py | hai 6 meses | |
| 焦炭计算公式.py | hai 6 meses | |
| 煤矿途径地点初始温度代码接收java数据算法.py | hai 7 meses | |
| 解冻库python代码接收java算法数据.py | hai 7 meses |
Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors, I made these simple scripts for a quick test.
Torch
git clone https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch
cd CartoonGAN-Test-Pytorch-Torch
The original pretrained models are Torch nngraph models, which cannot be loaded in Pytorch through load_lua. So I manually copy the weights (bias) layer by layer and convert them to .pth models.
Download the converted models:
sh pretrained_model/download_pth.sh
For testing:
python test.py --input_dir YourImgDir --style Hosoda --gpu 0
Working with the original models in Torch is also fine. I just convert the weights (bias) in their models from CudaTensor to FloatTensor so that cudnn is not required for loading models.
Download the converted models:
sh pretrained_model/download_t7.sh
For testing:
th test.lua -input_dir YourImgDir -style Hosoda -gpu 0
Many thanks to the authors for this cool work.
Part of the codes are borrowed from DCGAN, TextureNet, AdaIN and CycleGAN.