1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- import pandas as pd
- import joblib
- from sklearn.ensemble import RandomForestRegressor
- # === 配置路径 ===
- csv_path = 'C:\\Users\\Administrator\\Desktop\\defrost\\feedback_data.csv' # 你的csv
- model_save_path = "defrost_time_corrector.pkl" # 模型保存路径
- # === 特征列定义 ===
- feature_columns = [
- "w", "rho_coal", "rho_ice", "C_coal", "C_ice", "L", "k_coal", "k_ice", "h",
- "T_air", "T_initial", "T_m", "a", "b", "c"
- ]
- # === 1. 读取CSV并预处理 ===
- try:
- df = pd.read_csv(csv_path, parse_dates=["t_formula", "t_real"], encoding='utf-8')
- print(f"✅ 成功读取CSV文件,共{len(df)}条数据")
- except Exception as e:
- print(f"❌ 读取CSV失败: {e}")
- exit(1)
- # 确保字段类型正确(如果这两列存在)
- for col in ["material_name", "manufactured_goods"]:
- if col in df.columns:
- df[col] = df[col].astype(str)
- # 计算真实解冻时长(小时)
- df["t_real_hours"] = (df["t_real"] - df["t_formula"]).dt.total_seconds() / 3600
- # 检查有没有缺失特征
- missing_features = [col for col in feature_columns if col not in df.columns]
- if missing_features:
- print(f"❌ 缺少必要特征列: {missing_features}")
- exit(1)
- # === 2. 智能训练模型 ===
- X = df[feature_columns]
- y = df["t_real_hours"]
- if len(X) >= 10:
- # 数据够多,做train_test_split
- from sklearn.model_selection import train_test_split
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
- print(f"📚 数据量 {len(X)},已划分训练集和测试集")
- else:
- # 数据少,直接全量训练
- X_train, y_train = X, y
- X_test, y_test = None, None
- print(f"⚠️ 数据量太少({len(X)}条),直接全量训练")
- # 建立随机森林回归模型
- model = RandomForestRegressor(n_estimators=100, random_state=42)
- model.fit(X_train, y_train)
- # 保存模型
- joblib.dump(model, model_save_path)
- print(f"✅ 模型训练完成,已保存为 {model_save_path}")
- # === 3. 预测最新一条数据 ===
- new_sample = df.tail(1) # 取最后一行
- X_new = new_sample[feature_columns]
- predicted_time = model.predict(X_new)[0]
- # 把预测值写回DataFrame
- df.loc[new_sample.index, "predicted_t_real_hours"] = predicted_time
- # === 4. 保存带预测值的CSV ===
- try:
- df.to_csv(csv_path, encoding='utf-8', index=False)
- print(f"✅ 最新数据预测完成,已更新到 {csv_path}")
- except Exception as e:
- print(f"❌ 保存CSV失败: {e}")
- # === 5. 打印最终预测结果 ===
- print(f"\n📊 预测最后一条数据真实解冻时间为:{predicted_time:.2f} 小时")
|