python算法

Yijun Li e0414a3215 Create LICENSE il y a 4 ans
network 45a2472acc init il y a 7 ans
pretrained_model 45a2472acc init il y a 7 ans
src 45a2472acc init il y a 7 ans
test_img d04144f690 Add files via upload il y a 7 ans
test_output 12d908365e Add files via upload il y a 6 ans
.gitignore 45a2472acc init il y a 7 ans
LICENSE e0414a3215 Create LICENSE il y a 4 ans
README.md 9950fe2dd3 Update README.md il y a 6 ans
test.lua 53a78ddf52 Update test.lua il y a 7 ans
test.py 760b975e55 Update test.py il y a 6 ans

README.md

CartoonGAN-Test-Pytorch-Torch

Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors, I made these simple scripts for a quick test.

Getting started

  • Linux
  • NVIDIA GPU
  • Pytorch 0.3
  • Torch

    git clone https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch
    cd CartoonGAN-Test-Pytorch-Torch
    

Pytorch

The original pretrained models are Torch nngraph models, which cannot be loaded in Pytorch through load_lua. So I manually copy the weights (bias) layer by layer and convert them to .pth models.

  • Download the converted models:

    sh pretrained_model/download_pth.sh
    
  • For testing:

    python test.py --input_dir YourImgDir --style Hosoda --gpu 0
    

Torch

Working with the original models in Torch is also fine. I just convert the weights (bias) in their models from CudaTensor to FloatTensor so that cudnn is not required for loading models.

  • Download the converted models:

    sh pretrained_model/download_t7.sh
    
  • For testing:

    th test.lua -input_dir YourImgDir -style Hosoda -gpu 0
    

Examples (Left: input, Right: output)

Note

  • The training code should be similar to the popular GAN-based image-translation frameworks and thus is not included here.

Acknowledgement