python算法

pjf fd7b4b1222 模型训练 1 mesiac pred
network 45a2472acc init 7 rokov pred
pretrained_model 45a2472acc init 7 rokov pred
src 45a2472acc init 7 rokov pred
test_img d04144f690 Add files via upload 7 rokov pred
test_output 12d908365e Add files via upload 6 rokov pred
.gitignore 45a2472acc init 7 rokov pred
LICENSE e0414a3215 Create LICENSE 4 rokov pred
README.md 9950fe2dd3 Update README.md 6 rokov pred
python算法时长计算研究生版.py 2e58cf5d32 算法 2 mesiacov pred
test.lua 53a78ddf52 Update test.lua 7 rokov pred
test.py 760b975e55 Update test.py 6 rokov pred
train_corrector.py f32016e467 模型训练 1 mesiac pred
参考.py fd7b4b1222 模型训练 1 mesiac pred
模型调用.py badb4f8659 编码 1 mesiac pred
焦炭计算公式.py a2999ddf51 算法 1 mesiac pred
煤矿途径地点初始温度代码接收java数据算法.py 2e58cf5d32 算法 2 mesiacov pred
解冻库python代码接收java算法数据.py 2934c6939d 算法--弃用 2 mesiacov pred

README.md

CartoonGAN-Test-Pytorch-Torch

Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors, I made these simple scripts for a quick test.

Getting started

  • Linux
  • NVIDIA GPU
  • Pytorch 0.3
  • Torch

    git clone https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch
    cd CartoonGAN-Test-Pytorch-Torch
    

Pytorch

The original pretrained models are Torch nngraph models, which cannot be loaded in Pytorch through load_lua. So I manually copy the weights (bias) layer by layer and convert them to .pth models.

  • Download the converted models:

    sh pretrained_model/download_pth.sh
    
  • For testing:

    python test.py --input_dir YourImgDir --style Hosoda --gpu 0
    

Torch

Working with the original models in Torch is also fine. I just convert the weights (bias) in their models from CudaTensor to FloatTensor so that cudnn is not required for loading models.

  • Download the converted models:

    sh pretrained_model/download_t7.sh
    
  • For testing:

    th test.lua -input_dir YourImgDir -style Hosoda -gpu 0
    

Examples (Left: input, Right: output)

Note

  • The training code should be similar to the popular GAN-based image-translation frameworks and thus is not included here.

Acknowledgement